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ABSTRACT

A mathematical model is constructed for interpreting precipitation probability forecasts which have areal
connotations. The paper is chiefly concerned with a simple discrete form of the model, in which a forecast
area is represented by N rain gages scattered throughout it, and a precipitation event is identified with the
observing of more than a trace of precipitation in a particular subset of the N gages. The basic parameters
in the model are: (a) conditional probabilities of the events consisting of the selection of particular subsets
of the N gages by precipitation, given that a certain proportion » of the gages are selected; and (b) a prob-
ability distribution for . The probabilities in (a) are assumed to be peculiar to the particular forecast area
and can easily be estimated from historical data. The probabilities in (b) (or at least the mean value of the
distribution) are intended to be the objects of estimation in each forecast. It is apparently customary for
forecasters to arrive at a forecast precipitation probability by calculating the theoretical mean value of r
and assuming that this is equal to a point probability valid uniformly at each point of the forecast area. As
explained within the model, this forecast method actually gives the arithmetic mean of the “point prob-
abilities” of the events that the Jth gage receives more than a trace for /=1, 2, - - -, N. Questions concern-
ing biases in published verification data and possible lack of randomness in sequences of precipitation veri-
fications within probability categories are raised as suggestions for further study concerning the operational
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significance of precipitation probabilities.

1. Introduction

The idea of expressing a precipitation forecast in
terms of numerical probabilities has been under dis-
cussion for many years (Cook, 1906; Hallenbeck, 1920).
However, it is only rather recently that such proba-
bilities have been included routinely in U. S. Weather
Bureau local forecasts. A local forecast pertains to a
geographical region which typically includes all points
lying in a circle of radius at least 25 mi about the center
of an urban area. Thus, a local forecast area generally
covers more than 1900 mi%. A probability forecast
appears in the news media in a format such as, “Shower
probability, 40 per cent.” Usually a single number is
given for the entire region. But sometimes an areal or
temporal qualification is published along with the proba-
bility, as is exemplified by the following forecast quoted
verbatim from the Miami (Florida) Herald for Sunday,
4 June 1967 :

Today’s forecast

Miami and vicinity: Partly cloudy through Mon-
day with scattered showers most likely during night
and morning hours except well inland during after-
noons. High today in eighties. Variable mostly
easterly winds 5 to 15 mph. Shower probability 50
per cent.

Here the “50 per cent” seems to be qualified both as to
time and as to location.

It is natural for a scientist or mathematician who is
familiar with quantitative probability theory, but who
is not a meteorologist, to wonder whether such a numeri-
cal probability statement can be given a meaning within
this theory. The genesis of the present paper was pure
curiosity on the part of the author, who has no formal
training in meteorology.

The fact is that in the absence of authoritative infor-
mation as to the intent of the U. S. Weather Bureau,
and under the assumption that meaningful quantitative
a priori probabilities really can be assigned to precipita-
tion events, there are quite a number of reasonable
conjectures which can be made as to what a single-
number precipitation probability might mean. For
example, it might mean: (a) the probability of the event
that some rain will fall somewhere in the forecast area
sometime during the time period covered by the fore-
cast; (b) the probability of the event that general rain
will cover all of the area; (c) the fraction of the forecast
area which will receive rain in the forecast period; (d)
the probability that a specific point in the forecast area
will receive more than a trace of rain sometime during
the forecast period.

Preliminary inquiries directed by the author to col-
leagues knowledgeable in probability and statistical
theory yielded a diversity of opinions as to what the
U. S. Weather Bureau precipitation probabilities mean,
but “nothing” was all too frequently the answer. Surpris-
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ingly, in a small sample of atmospheric scientists and
meteorologists, there was no consensus. For example, a
distinguished weather research scientist told the author
he thought that it was the probability of the event (a).
However, it is soon clear to anyone who dips into the
weather forecasting literature that the official Weather
Bureau interpretation is the probability referred to
in (d).

Actually the difference between the probabilities (a)
and (d) can be very great under certain circumstances.!
For example, suppose that a forecast is based on the
expectation of a particular circulation regime, which,
when it has occured in the past, has on the average
deposited precipitation on 109, of the forecast area in a
12-hr pertod, and every time the regime occurred, some
precipitation fell somewhere. Suppose further that the
probability that this regime will obtain during the fore-
cast period is estimated to be 909, and the alternative
is no rain at all. The analysis in Section 5 shows that
if the probability (d) is assumed to be uniform over
the forecast area, then this probability in the present
case is 99, whereas the probability (a) is 90%,.

Stated in detail, here is the official viewpoint of the
Weather Bureau toward precipitation probability fore-
casts.? The event to which a precipitation probability
applies is the occurrence of more than a trace of pre-
cipitation (water equivalent, if frozen) within a specific
forecast period at a specific point in the forecast area.
(“More than a trace” at a point means that 0.01 inch
or more of precipitation is deposited in a rain gage at
the point during the forecast period.) For purposes of
verification the specific point is taken to be the location
of the rain gage at the official local Weather Bureau
Station ; for example, this is Midway Airport for Chicago
and vicinity. When a single unqualified probability
number is released in a local forecast, the assumption is
made implicity that local conditions will impose only
one regime of events in the metropolitan area, and that
the published “point probability” is therefore at least
approximately valid at each point of the forecast area.

Thus, a forecaster would be meeting government
specifications, so to speak, if he concentrated on estimat-
ing the relative frequency, given the forecast informa-
tion, of the event that more than a trace of rain will be
recorded merely in the one gage at the official station.
Now if a given forecast is based on the assumption that
either a general rain will cover the forecast area com-

1In general, the authors of reports and published papers on
precipitation probabilities in the meteorological literature are
clearly aware of this fact. For example, see Hughes (1965). As
another example, Epstein (1966a) sets up an explicit but rather
artificial model involving coverage by “random’” showers of
circular shape and of constant radius. Within this model he de-
rives( the exact relationship between the probabilities of (a)
and (d).

2 Gee, for example, Hughes (1965). The wording used here
in the text follows very closely a formulation in a letter to the
author dated 13 March 1967, from R. H. Simpson, Associate
Director of the U. S. Weather Bureau.
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pletely during the forecast period or there will be no
rain at all, then there can be no ambiguity in the mean-
ing of the forecast probability for a user who is advised of
the assumption. The probability number released will be
the estimated probability of the general rain, and this
will obviously be the same as the user’s own point
probability, wherever he may be located in the forecast
area. But suppose that the alternatives to ‘“no rain”
include various possibilities as to partial coverage of the
forecast area by precipitation during the forecast period.
Then in order to interpret a single-number precipitation
probability forecast as a point probability uniformly
valid over an area of at least 1900 mi? clearly some
assumptions must be made as to the way in which the
location of any partial coverage will be distributed in the
forecast area.

As far as the author is aware, these assumptions as to
the probability distribution of covered area have not
been discussed explicitly and in generality in the litera-
ture of precipitation probability forecasting. It is the
purpose of this paper to set up an elementary mathe-
matical medel within which the necessary assumptions
and various other logical problems attendant upon pre-
cipitation probability forecasting for an area of sub-
stantial content can be studied. One aspect of the model
may be found to be useful by weather scientists in that
it provides a procedure for the routine preparation of
more than a single point probability in a given forecast,
on the basis of a forecast only of the probability
distribution of the proportion of area which will be
covered by precipitation.

Most of the discussion in the text of the paper is
concerned with a simplified discrete form of the model.
Here the only observables are represented by a set of
dichotomous variables, each of which is given the value
1 if the particular rain gage to which it is assigned shows
more than a trace, and 0 otherwise. The exposition uses
only elementary mathematical terms which are widely
accepted within the theory of statistics. There are no «
priori assumptions requiring the use of special proba-
bility distributions, such as the uniform distribution or
the Poisson distribution.

One last word of introduction. The developments in
this paper are based on the assumption that standard
probability theory really can be applied usefully to
precipitation forecasting. It is a favorite practice of
mathematicians to side-step really difficult problems by
making formal hypotheses. In the author’s opinion,
there may be such a problem in probability forecasting.
It is 4 problem which is hard even to formulate exactly.
An attempt can be made with this question: Are the
precipitation “probabilities” which are being released to
the public really interpretable as action probabilities in
day-to-day decision-making, or are they only some sort
of very long-term average frequencies which are inappli-
cable to a particular single forecast period? The question
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will be discussed in more detail in Section 6, but no real
effort will be made to come to grips with it in this paper.?

2. A sample space for the precipitation ‘‘experi-
ment”’

First, a summary of the premises scattered through
the introduction will be given.

The type of precipitation forecast under discussion is
a local forecast applicable to a forecast area of sub-
stantial areal content, typically more than 1900 mi?.
(The discussions will also apply by trivial specialization
to a forecast area which is only a pin-pointed spot such
as an air field or the local official weather station, but it
is doubtful if this paper carries much useful information
for such a situation.) “Forecast area’” will henceforth
be abbreviated to FA. The precipitation forecast applies
to a particular period of %# hours in the more or less
immediate future which will be called the forecast
period. Typically, A=12 hr.

It is also supposed that the event which a precipita-
tion forecast refers to in general is the wetting of a
certain geographical subregion of FA by rain at some
time in the forecast period. The rain may fall in one
shower, or several intermittant showers, or throughout
the forecast period. The amount of rain at a given
location will not be taken into consideration, provided
that it is not less than 0.01 inch as measured by a rain
gage. This threshhold amount will be referred to fre-
quently as “more than a trace.”

For the convenience of the reader who does not have
a mathematical-statistical backgound, a brief and very
incomplete description of the standard modern approach
to elementary probability model-building will be
sketched in the next three paragraphs. Various detailed
treatments are available in the newer probability text
books; one which has become a classic is that of
Feller (1957).

The starting point is the idea of a random experiment,
which in the purely mathematical sense is an undefined
notion. In general terms, a random experiment consists
of some actions performed on a given system, or reac-
tions which automatically take place within a given
system, which yield an observable result, but the result
is not categorically predictable in advance of the experi-
ment. It is customary to call a result of a random
experiment an event. Thus, if the random experiment
consists of the toss of five coins, more than three falling
with heads up is one of the various events. If the
experiment consists of dealing the cards in a bridge

3 The question of the credibility of probability forecasts has
been studied by Epstein (1966b), but he starts with the assump-
tion that the forecasted probability is indeed a probability in some
recognized sense (in his case, a subjective probability) which may
require modification via Bayes’ Law by the user in the light of his
experience. This is not the same as the problem posed in the text
above, which pertains to the statistical regularity of a sequence of
observations at the official rain gage, given a particular probability
forecast such as 309%,.
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game, the appearance of a given set of 13 cards in
North’s hand is one of the various events.

The assignment of probabilities to a random experi-
ment consists in assigning numbers lying in the interval
[0, 1] to each of the possible events. The number given
to any event is supposed to measure in some way the
degree of certainty of this event. The rationale under-
lying the specific numerical assignment of the proba-
bility measure for any given random experiment belongs
partly to the philosophical part of probability theory
and partly to the realm of statistical theory. There are
also some mathematical technicalities which limit the
types of events to which probabilities can be assigned.

The concept of the sample space for a random experi-
ment is basic to an assignment of probabilities. The
sample space is the set of all so-called simple events, by
which is meant the set of all reasonably possible,
different, non-decomposable results of the experiment.
An event is then a set of simple events, which may consist
of only a single simple event. An event is said to occur
in a performance of the experiment if the outcome of the
experiment can be identified as one of the simple events
in the event. It is implied that no two simple events can
occur simultaneously; simple events are “mutually
exclusive.” (In the older literature, the simple events
comprising a given event are called the “ways in which
the given event can occur.”) For example, in a bridge
deal, an appropriate sample space consists of the set of
all different divisions of the bridge deck of 52 cards into
four equal piles of 13 cards at four distinct locations,
say E, S, W, N. Each such deal is a simple event and is
thought of as an element or point in the sample space.
The event that N gets all the spades is comprised of all
the simple events in which E, S, W are dealt piles
containing no spades. For a toss of two coins, a penny
and a dime, the sample space might conceivably be
represented by the set of symbols {HH, HT, TH, TT,
EH, ET, HE, TE, EE}. Here H or T standing first in a
symbol means, respectively, that head or tail showed
on the penny and E means it stood on edge. There is a
similar significance for the dime in the second letters.
But, of course, this sample space would usually be
simplified by leaving out the symbols with an E in them.

In the case of precipitation, the random experiment
consists of the interaction of those meteorological phe-
nomena which affect precipitation over FA during the
forecast period. In view of the premises stated at the
beginning of this section, the result of a performance of
the experiment is merely that each point of a certain
subset of the geographical points in FA received more
than a trace of precipitation. Thus, the set of all simple
events (that is, the sample space) can be identified with
the collection ®(FA) of all subsets of points in FA.* The
particular event E in ®(FA) occurs if all the points in £
and no other points in FA are observed to receive more
than a trace in the forecast period. For purposes of

* Mathematicians call ® (FA) the power set of the point set FA.
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identification as simple events, two subsets E; and Ej of
FA, itself considered as a geographic point set, are
regarded as “different’ if they are unequal in the point
set theory sense; that is, if E, contains one or more
points not contained in E,, and/or vice versa. Thus,
E,; and E, may overlap extensively in the geographical
sense but still be different and therefore “mutually
exclusive” as to occurrence.

One might be tempted to inquire here as to why such
an abstract sample space is required. Would it not suffice
to consider just the collection of all geographical points
in FA as constituting the sample space? The under-
standing would be that a point (simple event) occurs if
it is observed to receive more than a trace in the
forecast period. But a moment’s thought reveals that
such a sample space would be totally irrelevant to the
precipitation random experiment, because the basic idea
in the physical interpretation of a sample space is that
the simple events in it occur in a mutually exclusive
manner. If one of the points in FA were to occur,
theoretically none of the other points in the FA could
occur during the same forecast period if this sample
space were to be adopted.

Theoretically, a probability distribution can be as-
sociated with an abstract sample space like ®(FA)
[see Kolmogorov (1950, p. 46)]. But obviously when
doing so in practice, one should somehow take “sizes”
of the respective wetted subsets into account. This
suggests that it would be useful to stratify the sample
space by grouping the subsets into classes according to
the amount of FA contained in each subset. This leads
to a revised notation for the sample space, i.e., the
sample space is represented by the set of all ordered
pairs (r, E,), where 7 is any number in the interval
[0.1] and represents the proportion of FA receiving rain,
and E, is any point set which contains exactly 1007
per cent of the points of FA.

A mathematical difficulty arises here. It is natural to
regard FA geometrically as an uncountably infinite
point set. Just how does one identify a subset “contain-
ing exactly 100r per cent” of these points?” The
difficulty can be obviated in an abstract treatment by
resort to the Lebesgue concept of area. Below in the
text of this paper it will disappear after a simplification
of the model.

Purely for notational convenience, it is useful to
enlarge the sample space {(r, E,)} by making it consist
of all ordered pairs (r, E), where 0<r<1 and E is any
subset of FA [that is, any member of ®(FA)]. Of
course, for a fixed 7, a collection 4 of subsets £ which
contains no subsets E of type E, is logically an
“impossible” event. This can be taken care of in the
assignment of probabilities by assigning a zero proba-
bility to such a collection 4.

This very general formulation of the sample space for
the precipitation random experiment will now be
simplified to accord with the realities of forecasting and
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of the actual observation of precipitation. The more
abstract model and its implications will be studied
mathematically in a paper to be published elsewhere.

In the first place, FA, considered as a continuous
geometric point set, will be reduced to a finite point set
containing N points. These points may be thought of as
representing the physical locations of the rain gages in
the original FA. But now a revised version of the areal
coverage r is required when the observations are con-
fined to these N points. The proportion 7 henceforth
refers to the fraction of the N rain gages which show
more than a trace. It can take on only the discrete set
of values r,=i/N, =0, 1, 2, -- -, N. In the sequel these
fractions will often be called the ‘“admissible values”
of r.

If the IV points in FA are assigned integers from 1 to
NN, the new sample space can be represented by the set of
all pairs {r;, E}, where =0, 1, 2, ---, N, and E now is
any subset of the set of integers {1, 2, - -+, N}. Butitis
desirable to have a more explicit notation which indi-
cates exactly which of the NV points belong to a given
set £ and which do not. To that end, the points now
comprising FA will be numbered from 1 to N, and to
the jth point, j=1, 2, ---, N, an indexing variable
x; will be assigned which has only two values, 0 or 1.
A particular subset E of the N points can now be
uniquely represented by an N-tuple (%1, 2 - -+, xx) in
which «;=1 if the jth point is in E, and x;=0 otherwise.
For example, with N=35, the S-tuple (1, 1, 0, 1, 0)
represents a subset of the 5 points which consists of the
first, second and fourth point. The proportion 7 of the
rain gages in the FA contained in a point E can now be
expressed as [number of ones in the N-tuple represent-
ing E]/N=(3_ "x;)/N. Thus, >_ 1¥x;=7N.

To summarize, in set theoretic notation the simplified
sample space is now represented by the set
{(77 X1, X2, * 7, xN):

r=1/N,i=0,1, ---, N;2;=0,1,7=1, ---, N}.

(There are (N+41)2V simple events in this sample
space.) For example, with N =35, the symbol (0.4, 0, 1,
0, 1, 0) represents the event that 1007 per cent (=40%)
of the gages show more than a trace, and the gages num-
bered 2 and 4 are exactly the ones which do show more
than a trace. The symbol (0.2, 0, 1, 0, 1, 0) is an “impos-
sible” event which will be given a probability zero in
the assignment of probabilities. The sample space
{(r, x1, %5, - -, xx)} will henceforth be denoted by Q.

3. Assignment of the probabilities

In view of the intended application of the model, the
natural way to assign a probability measure to the
sample space @ is as follows. For a specific admissible
value of 7, say r=7,=14/N, a (conditional) probability
distribution is assigned to the subset of Q,

ST={(ri7 X1, Xgy "7y xN):xj=07 1)j=17 T N}
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This is done for each admissible value of . The assign-
ment of probabilities is completed by specifying an
(unconditional) probability distribution for » on the
points r=7,=1/N, i=0,1, ---, N.

The probability distribution for  will be represented
by the (N+1) vector == (mwo, m1, -, 7mn) where
mi=Prob(r=7,)=20,1=0,1, - -+, N, and mo+m+- - -+
mxy=1. The number 7y is equal to the probability of less
than a trace in all gages (“no rain”) in FA during the
forecast period and the number my is the probability of
more than a trace in all gages (“general rain”).

The conditional probability distribution assigned to
to .S, for a fixed » will be specified pointwise. The con-
ditional probability given to the point (r, %1, %3, « - -, %n)
will be denoted by p=p(x1, %2 ---, xn|r). If &1+
%o+ - - +an7#rN, then the probability p is assigned the
value zero. If 4%+ - - - +xy=7N, then p may or may
not be assigned the value zero, but it must be non-neg-
ative, and the following restriction must be observed to
accord with the standard axioms of probability theory:

Al

1
Z p(xly X2, ""xN|r)=1

TN=0

1
Xt xot - an=rN

The number of terms in this sum is equal to the number
of distinguishable ways in which V ones and N—7N
zeros can be arranged in a row, and is given by the
formula

N N
(m)zowﬂmhqwﬂ

If =0, then $(0, 0, - --0|7)=1 and all the other con-
ditional probabilities are zero. If r= 1, then p(1, 1, -- -,
1/r)=1 and all the other conditional probabilities are
zero.

In the overall sample space , the event that r equals
some admissible fixed value, say 7;, and that the Jth
rain gage shows more than a trace (so x;=1), is com-
prised of the set of simple events {(r;, 1, xs, - - -, 2x):

=0orl,j=1,2,---,J—1,J41,---,N;x,=1} with
the restriction that x;4x,4+-- R 7 AR ol B S SRE
+2xny=r:;V=1. The conditional probability of this event
is

1 1
plar=1ljr)=%x ¥ ---

z1=0 29=0
2CTRERER lefi)
2itdot - At st av=1

TrEOREM 1. For each admissible value r; of r, the arithme-
lic mean of the conditional probabilities p(x1=1|r),

1 1 1
2y—1=0 Zy4,=0 =N=0

2

XJ-1, 17 XJ+1, * 0,
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., plan=1]r), equals r;. In symbols

plaa=1|ry), -+

N
> pla=1|r)
i=1
=7
N
The proof is given in the Appendix.

Now let p(x;=1) denote the unconditional proba-
bility that the Jth location receives rain. This is the
“point probability”’ for the Jth location. By a standard
formula®

p(xJ=l)=éfr,~p(xJ=1|n). . (3)

(The first term in the sum is zero and the last is mx.)
TuaeoreM II. The arithmetic mean of the point proba-
bilities at the N locations is equal fo the theoretical mean
value E(r) of the proportion r of area covered. (This mean
value is calculated over the assigned probability distri-
bution of r represented by the vector =.) In symbols,

‘é p(xj=1)

=E(r).
N

For according to Eq. (3) and Theorem I,

_AVI_EI pla;=1) i{ plas=1|r)

N n
= Z LE = Z ¥,
N i=0 =0

The right member of this equation is by definition the
theoretical mean value of », considered as a random
variable with a probability distribution given by the
vector =.

The analogous theorems for multipoint probablllties
will now be presented. Let p(xs=1, xs,=1, ---
x.s,,=1]7) be the conditional probablllty that the gages
at the particular locations Jy, Ja, -« -, Jm, m=rN, all
show more than a trace given that 7V of the rain gages
each show more than a trace. Then for r=7;,

p(le= 1, x_]2=1, ceey xjm=llri)

=Zp(x17 Koy * xN’Ti), (4)
where the summation is over all N-tuples (x;, #,, - - -,
xy) in which x;=x7=---=2,,=1 and %42+ --
—}—xN= TiN= 1.

Let p(xs,=1,xs5,=1, - - -, xs,,=1) denote the m-point
unconditional probability that the particular locations

J1, Js, - -+, Jm all register rainfall in the forecast period.
Then the analogue of (3) is

P(xJ1=

1, @rp=1, ---
N
=z7"iP(xJI=1, “')xfm:llri)' (5)
=0

5 See Feller (1957, p. 106).
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The terms in the summation with 7,<m/N are zeros.
It is to be noted that all the terms on the right side of
Eq. (4) are included among those on the right side of
Eq. (2), so the following inequalities are valid:
plr=1r)2pr=1x5=1, -+, 2s,=1]r:);
k=1,2, ---,m;i=0,1,2, ---,N.  (6)
It then follows from comparison of Eq. (5) with Eq.
(3) that

P(x1k=1)-2-1’(xl1=1: "';xfm=1) (7)

with k=1, 2, - -+, m, and for any selection of # locations.
Another obvious inequality which might be worth
mentioning is

P(x-h:l’ xry=1, '-',me=1)§7rN, )
where 7y 1s the probability of 1009, areal coverage (a
general rain). The inequality is true for m=1,2, ---, N.

If the forecast is based on the assumption that there are
just the two possibilities, “no rain’ and “general rain,”
then the relation (8) is an equality. The validity, in
general, of the relation (8) follows from the fact that
plxr=1,---,x;,=1|r=1)=1, and the sum in Eq. (5)
is at least as large as its last term which is myX1.

For each fixed admissible »r and m<rN, there are (Z)

conditional probabilities p(xs,=1, xs=1, -, Zim
=1]7), corresponding to the number of different selec-
tions of the set of m integers {J1, Js, -+ -, Jm} from the
set of integers {1, 2, - - -, N'}. The extensions of Theorem
I and II to the multipoint case will now be presented.
TueoreM II1. With m <rN,

Z ?(x"lzlj x“J2=1, "',me=1|7)

Jy, Jo, -, J
<m>

B (PN—1)(rN—=2)---(tN—m+1)
TN —2) - (N —mt1)

where the summation is over all selections of m integers
from’ the first. N positive integers.

;- The proof will be deferred to the Appendix. Then by
using Eq. (5) and treating 7 as a random variable with a
distribution given by the vector =, we obtain
TuaEOREM IV,

> plen=1, 0 00,=1)

JyJa, oo Im
< >

B (*IN=1)(N—-2) - - ¢N—m+1)
T N—-)W—=2) - (N—mt1)

=E[/(n],

where
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and the summation is over all selections of m integers from
the first N positive integers.

The function f(r) which appears in Theorems ITI and
1V is approximately equal to ™ for large N. It is easy to
show algebraically that f(r)<r™ for 0<r<1.

In fitting this model in full detail to a series of fore-
casts, it is logical to regard the conditional probabilities
p (%1, 22, - -+, xx|7) as being determined by local clima-
tological conditions. Therefore, they are supposed to be
set up numerically once and for all for each admissible
value of the proportional areal coverage 7. This could be
done by using statistical data giving which, and how
many, rain gages showed more than a trace in a long
series of forecast periods. As a first-order approximation
to such a detailed procedure, attention can be con-
centrated on the conditional one-point probabilities
p(*;=1|7), which are then supposed to be determined
(presumably again by statistical methods) once and for
all for each location J and for each admissible areal
coverage r. It is only the probability distribution of r, given
by the vector == (o, 71, - - -, wn) Which would be the object
of estimation in a given forecast.

The italicized words “once and for all’ in the pre-
ceding paragraph need qualification. Several sets of
values of the conditional probabilities p(x1, ®2, - -,
an|7) or p(xs=1|r) may be needed if the local clima-
tological conditions change seasonally, or indeed diur-
nally. As an example, in a Miami and vicinity forecast,
if the forecast period is from 0000 to 1200 GMT and if
209, of the area will be wetted, then at certain times of
the year and under certain conditions rainfall occurs
only in convective showers which move in from over the
Gulf Stream and the 209, will consist of only a narrow
costal strip. On the other hand, if the forecast period
is from 1200 to 0000 GMT on a summer day, and if 20%,
of the area will be wetted, often the affected area will be
close to the Everglades, well west of the heavily popu-
lated districts. What is meant here by “once and for
all” is that in this model the (unconditional) probabilities
of the various values of r represented by the vector = are the
parameters which vary from one precipitation probability
forecast to another and the values of the probabilities
Py, %s, -+ -, %y |7) are to be thought of as predetermined
constant coefficients insofar as the forecast is concerned.

4. Mathematical restrictions inherent in the model

In this section, the model developed in the two pre-
ceding sections will be examined to see what restrictions
the assumption of a single uniformly applicable point
probability imposes on the assignment of probabilities
to the sample space and on the interpretation of the
forecast. A precipitation point probability which is
assumed to be valid at all points of FA will be called a
uniform point probability. The first finding will be that
a uniform point probability is numerically equal to the
theoretical mean value of the proportionate areal cover-
age. In more detail, this theoretical mean value, denoted
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by E(r), is the mean or “expected” value of the fraction
7 of the NV rain gages which will show more than a trace,
when 7 is treated as a random variable with a probability
distribution which is consistent with the point proba-
bility forecast. This mean value is not necessarily coinci-
dent with any admissible value of . For example, if the
forecast probability is 40% and there are V=6 rain
gages, then the admissible values of » are 0, 1/6, 2/6,
3/6, 4/6, 5/6, 6/6, and none of these fractions equals
40/100.

Operationally, from a statistician’s point of view, E(r)
is the arithmetic average of the values of which would
be observed in a long sequence of cases in which a
particular point probability, like 409, is correctly
forecast.

The fact that a uniform point probability is equal to
the theoretical mean value of the proportion of area
covered follows at once from Theorem II. Let p(x;=1)
=P, a constant, j=1, 2, ---, N in that theorem. The
equation in the theorem becomes

N
> P
ji=t NP
E(r)= =—=P,
N N

Similarly, Theorem 1V shows that if the m-point proba-
bilities are uniform, their common value is approxi-
mately equal to (but less than) the theoretical mean
value of »™.

The second finding is that a policy of always issuing a
uniform point probability for FA, no matter what the
estimated probability distribution of the proportionate
area coverage r may be, implies that given any admis-
sible 7, the corresponding one-point conditional proba-
bilities p(x,=1]r), J=1, 2, -+, N, must have a com-
mon value. This value is 7.

The truth of this proposition depends vitally on
persistence on the part of the forecaster in releasing
uniform point probabilities in the presence of varying
probability distributions of #. It is not generally true
that if the assignment of the probability to the sample
space Q is such that the unconditional point probabilities
p(x;=1), J=1, .-+, N, happen to be all equal, then
necessarily the conditional point probabilities p(x;
=1|r), J=1, ---, N, are equal for each admissible
value of ». In general, there are far too many degrees of
freedom in Egs. (2) and (3) taken together to permit
such a conclusion to be drawn. What is true is this:
Consider any assignment of the conditional point
probabilities p(x1, x5, - -+, xnx|7;) which yields through
Eq. (2) a certain matrix of one point conditional
probabilities,

plxs=1|r)
n= J=1,---N —‘.
L i=0, 1,-~-,NJ

H. CURTISS 9

(The row index is J and the column index is ¢.) It will
be recalled that in the intended application the ele-
ments of this matrix are supposed to be determined
“once and for all” by local climatological conditions and
are independent of the probability distribution assigned
to 7, which will vary from forecast to forecast. Suppose
now that for every assignment of the probability vector
= for r, it is known that the unconditional point proba-
bilities given by Eq. (3) are all equal. Then the only
specifications of the conditional point probabilities
$(x1, -+ -, xy|7) which are consistent with this informa-
tion are those for which M has the form

07’1 Yo - 'TN._11
M= 01’17’2"'7’1\7_11 .
07’17’2' . -rN_11

The proof is exceedingly simple. One of the theoreti-
cally possible assignments of the probability distribution
of r is that in which for a selected integer I, 0< /<N —1,
the only possible values for  are taken to be r; and 0,
the former say with probability ¢ and the latter with
probability 1—gq. Then for each J, /=1, 2, ---, N, Eq.
(3) becomes simply

plas=1)=1—q)p(x,=1[0)+¢-p(x,=1]7,),
=(1—¢)-0+q-p(xs=1]r1),
=q-p(xs=1]r7).

But, by hypothesis, there exists a constant P such that
plxs=1)=P, J=1, ---, N. Therefore, p(xs;=1]r7)
=P/q,J=1, ---, N. By Theorem I, the only possibility
now is that p(xy=1|r;)=r;. The argument can be
repeated for each integer I, 0<J <M. Incidentally, the
elements in the first and last columns of M are auto-
matically zeros and ones, respectively, by definition.
The result can be stated formally as follows:
TrEOREM V. If no matter what probability distribution is
assigned lor (the proportion of rain gages in FA showing
more than a trace), the unconditional point probabilities
satisfy the relation

prr=D)=pw=1)="--=py=1),

then the only assignments of the areal conditional probabili-
ties p(x1, %, * -+ -, xn|7) which are compatible with this as-
sumption are those in which the conditional one-point
probabilities obey the relations

ri=plei=1{r)=plx,=1lr)
= =plan=1|ry), i=0,1, -+-, N.

The proof given above depends on the assumption of
persistence of the equality of the point probabilities
even in the presence of certain rather extreme specifica-
tions of the probability distribution of . The next
theorem shows that the conclusions of the theorem
remain true if equality of the point probabilities is
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assumed for only a few reasonable specifications of the
vector = which gives the probability distribution of 7.
TrEOREM VI. Let S be a set of N specifications of the
vector = of which the kth is denoted by

wb= (mg®, m®, oo iy ®)s k=1 -+, N.

Further let S be such that the N-dimensional vectors
(1 ®), 1), , tv®), k=1, 2, , N, are linearly
independent. If it is assumed that the point probabilities

plxr=1), J=1, 2, , N, are equal for each vector
=*, then

=ple=1]r)=---=pn=1|r), i=0,1, -- -, N.

The common value of the point probabilities for a
given vector =* depends on k. The proof of the theorem
is given in the Appendix.

The special specifications of the vector = used in the
proof of Theorem V form a set .S of the type described in
Theorem VI. In fact, any set of N specifications of = in
which the kth vector =* gives preferential probability to
the value r=ri,=Fk/N, over all allernative iniermediate
proportions of area covered for each k, k=1, 2, ---, N,
satisfies the requirements on S in the Theorem. (This is
proved in the Appendix.) The words ‘“‘preferential
probability” are to be interpreted by the following
inequality among the components of =*:

N O NI O N I I O N R O NI O

This seems to be a natural type of specification.

For example, it would include something of this sort.
With N=10, the probability of 609, coverage is 0.7 of
509, or 0.2, of 709 is 0.1 and the probability of any
other coverage is zero. The vector = in this example is
©,0,--+,02,0.7,01,0, ---,0).

Qualitatively speaking, the force of Theorem VI is
this: If the model developed in Sections 2 and 3 is used
to prepare and interpret precipitation probability fore-
casts, and if they are repeatedly issued as a single point
probability assumed to be applicable to the entire FA,
then there is an assumption that for any intermediate
areal coverage, the conditional probability that a rain
gage shows more than a trace is the same for all gages
in FA.

Uniform conditional point probabilities, given a fixed
proportion 7 of area coverage, do not necessarily imply
that the precipitation is “selecting at random” the 7V
gages which show more than a trace. (Here “‘selection
at random” means that the conditional probability
attached to any particular set of NV gages is the same
for all sets of 7V gages.) Given any set of N numerical
conditional one-point probabilities, whether all the same
or not, Egs. (2) allow wide latitude in the corresponding
conditional probabilities p (%1, x2, - -+, xn|7) even for
quite small values of N, because as equations in these
unknowns they are in general under-determined. These
are, in fact, N equations in N!/[(*N)!{(N—rN)!]
unknowns.

But if it is assumed that precipitation covering a
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proportion  of the gages does select the gages at random
in the above sense for each value of 7, then this implies
that the conditional point probabilities p(x1, %2, -,

an|7:) for r=r; are all equal. | The common value would

N
be 1/(z ):| It would follow from Eqs. (2) and (4)

that the conditional one-point and conditional multi-
point probabilities would all be equal, and then accord-
ing to Egs. (3) and (5), the unconditional one-point
and multipoint probabilities would have to be equal.

With the methods used to establish Theorem VT it
can be shown that if the possible specifications of the
probability distribution of  include those of the type
described in the hypotheses of this theorem, then an
assumption of uniform m-point (unconditional) proba-
bilities, m>1, implies that the conditional m-point
probabilities must be all equal for each admissible value
of 7, whether or not random selection of gages is
assumed. When such is the case, then according to
Theorem IIT the common value of these conditional
probabilities for a given » must be the right member of
the equation in Theorem III. In particular, the 2-
point probabilities must all have the value r(zN—1)/
V—1)<r

It seems apparent from the following argument that
in actual practice the assumption of uniform 2-point
probabilities would not be acceptable when uniform
1-point probabilities are also assumed. If the conditional
1-point probabilities are assumed to be all equal for a
given value of 7, then according to Theorem I, each
must be numerically equal to 7 itself. Consider now the
following two events: 1) the gage at location J shows
more than a trace; and 2) the gage at location K shows
more than a trace. For the given value of 7, if these were
statistically independent events, then the probability
that they doth occur during the forecast period would be
the product of the two point probabilities, or »2. But if
the assumption of uniform 2-point probabilities is made,
then as seen in the preceding paragraph, the probability
that the two events both occur is less than #2; in other
words, it is even less than it would be with statistical
independence. Yet if the locations J and K were rela-
tively close together geographically, one would expect
on practical grounds that the probability that both
gages show rain would be nearly equal to the probability
that either one shows rain, regardless of what happens
in the other gage. This probability, under the assump-
tion of a uniform one-point probability is equal to r, and
7 is greater than 72 when 7 is not 0 or 1. Thus, a uniform
2-point probability seems to be incompatible with a
uniform 1-point probability.

5. Precipitation probability forecasting in practice
as related to the model

There are probably a number of different methods by
which U. S. Weather Bureau forecasters are arriving at
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precipitation probability forecasts. However, the one
about to be described has been officially sanctioned,®
and it is the only one which will be discussed in this
paper.

Assume that there is only a finite set of distinguish-
able circulation regimes Ry, R, -+, Rg, - -, R, which
produce precipitation over FA, and when such a regime
is present during the forcast period, some rain will surely
fall somewhere in FA. Assume further that for each
regime Ry there exists a uniquely determined proba-
bility for each positive admissible value of » (the
proportion of area covered). Let Prob (r=r,)=/;\%,
i=1,2, .-+, N, where r,=i/N, i=0, 1, -- -, N, are the
admissible values of 7, and f;'O 4,4 . . -y E) =1,
In the framework of the model of Sections 2 and 3, the
vector €= (f{5), ...  fyYO) plays the role of a con-
ditional probability distribution of 7, given that Rx has
occurred. Suppose that by data processing of past
observations on the variable 7 for the various regimes
Ry, an arithmetic average Ax of the observed values of
r has been computed for each Rg. For each given Rk, Ax
is theoretically an optimal estimate of the conditional
mean value

EK(7|RK)=Z Tifi(K).

1=1

The forecaster’s decision process is then this: At
forecast time he identifies a particular regime Rg which
seems likely to obtain over FA during the forecast
period. He then proceeds on the assumption that either
Rg will indeed obtain during the forecast period or there
will be no rain at all anywhere in FA. He then estimates
the probability Prob (»>0), of some rain somewhere
[or the complementary probability Prob(r=0)], multi-
plies this by Ak, and announces the product as the
forecast point precipitation probability.

Disregarding statistical approximations, the number
P thus arrived at is given by the formula

P=E(r|Rg)-Prob(r>0). 9

Now in what sense is this a point probability valid for
the entire FA?

The selection of Rx and the probability Prob(r>0) of
its presence selects automatically an unconditional
probability distribution w&= (x¢®), ;&) ... zyE)
for » over the entire range of admissible values of »
including ro=0. The components of =¥ are, respectively,
moE=Prob(r=0), 7, &

=f8).Prob(r>0), ¢=1,2, ..., N.
(Tt will be noted that the sum of these components is
unity, as it should be.) Then the term on the right side

¢ See Hughes (0p. ¢it.), Eq. (1), and accompanying explanation.
The description given in the text above is a paraphrase in the
terminology of this paper of information transmitted to the
author by C. F. Roberts, Chief, Technical Procedures Branch,
U. S. Weather Bureau, in a private communication.
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of Eq. (9) can be transformed as follows:

E(r|Rg) Prob(r>0)= (ZN: rifi%) - Prob(r>0)

N N
=3 ra =3 ra: K =Ex(r),
i=0

=1

(10)

where Eg(r) is the unconditional mean value of r over
the probability distribution given by =¥. So here the
vector =¥ has been specified partly by choosing a regime
Ry which automatically specifies the numerical proba-
bility vector £, and partly by choosing a numerical
value for the probability Prob(r>0) that this regime
Rg actually will obtain over FA during the forecast
period. Thus, when a forecaster designates the right
member of Eq. (9) as a point probability, he is actually
saying that the point probability is the mean value of
areal coverage FEg(r).

To justify this rigorously, it is apparently necessary to

- refer to the probability model developed in Sections

2 and 3. It is brought out in Section 4 that within this
model, a uniform point probability P does imply an
assignment of probabilities to the sample space which is
such that the mean value of the proportion 7 of area
covered is equal to P.

But the assumption of a uniform point probability
is not without implications as to the conditional point
probabilities, and these implications may be incom-
patible with physical realities. The implications are
contained in Theorem VI of Section 4, which will now
be interpreted in the language of the present discussion.
Suppose that the set of circulation regimes Ry, Ry, - -,
R, which a forecaster recognizes in making forecasts
contains a subset of NV regimes, say Rk1, Rxs, * - -, Rew,
for which the corresponding probability vectors =X,
=52 ... =E¥ are a linearly independent set of vectors.
Suppose further that the forecaster always issues a
uniform point probability or at least always does so
when confronted with any of the regimes Rgy, - - -, Rgw-
Then according to Theorem VI, the forecaster must be
assuming that the conditional one-point probabilities,
given any particular proportion » of area coverage, must
all be equal (and equal to r).” For example, given that

” The hypothesis of Theorem VI requires the existence of a set of
specifications ®*, k=1, --- N, of the unconditional probability
vector = in which the N vectors formed by striking out the first
component of each =* are linearly independent. It is indicated in
the discussion following Eq. (9) that when the forecaster selects
the regime Rgx and a probability Proby (r>0) that Rgy will ob-
tain, where Probg (r>0) varies with the forecast, then he is in ef-
fect constructing an unconditional erobability vector x* for r with
components [Probr (r=0), f;¥® Proby (r>0), i=1, ---, N].
If the N vectors X% k=1, ... N, are linearly independent, then
the NV vectors formed, respectively, by taking the dot products of
the vectors ££% with any set of IV positive scalars Probr; (r >0),
Probg; (r>0), - -+, Probrx (r>0) will again be linearly inde-
pendent. Thus, the admission of the regimes Rxi, Rk, - -+, Rxy
into the repertory of the forecaster implies the existence of a set
of specifications of the unconditional probability vector = as
required in the hypothesis of Theorem VI.
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there was only 109, coverage, the probability that any
gage showed more than a trace would be the same
(109,) for all gages in FA.

It would be out of place in this paper to discuss at
length the compatibility of such a restriction with
physical reality. In the case of certain local forecasts for
Miami and vicinity mentioned at the end of Section 3,
it does seem rather meaningless at times to release a
single point probability. It also seems to the author to be
confusing to issue a uniform point probability, like 509,
and then qualify it by words such as “well inland during
afternoons,” as is done in the forecast quoted from the
Miami Herald in the Introduction. In this example,
what does that 509 really mean? Apparently the 509,
is not even valid at the official verification gage at the
Miami International Airport, because this is not “well
inland.”

Three rather obvious remedies come immediately to
mind for cases in which a uniform point probability is
suspect. The first one can be criticized as merely a sop
to the purist, but at least the forecaster would be making
a theoretically correct statement. This remedy consists
in identifying a precipitation probability forecast as an
arithmetic average of the true point probability values
at the points of FA. The actual words used would be
something like this: “Shower probability, 50 per cent on
the average for the area,” or “Average shower proba-
bility, over the area, 50 per cent.” It would not be con-
tradictory to qualify this kind of statement by identi-
fying subregions of FA where higher or lower point
probabilities are expected to prevail.

The other two suggestions involve issuing different
point probabilities for different subregions of FA. First,
there is the obvious procedure of making separate
forecasts for various subregions by the methods used for
the overall forecast. It would appear that this might
impose an unjustifiable additional burden on the local
forecast stations.

The second suggestion involves exploiting for practi-
cal purposes the model in this paper. Just what com-
plications would that entail?

Assuming that the forecaster takes the approach
described earlier in this section, for each Rx he would
need to have approximations (based on historical ex-
perience) for the corresponding individual probabilities
FrE, £, . fy &) instead of merely an approxima-
tion to the theoretical mean value E(r|Rg) of this
distribution. If the historical average value of » has been
actually computed for a given Rg and not just guessed
at, then the data on which it was computed might also
be available, and these data consist of the relative
frequency approximations to the probabilities f;(%).

In the second place it would be necessary to have
estimates of the conditional one-point probabilities
p(xy=1]7) for the various admissible values of 7 at the
N locations of rain gages in FA. The datum for a
determination of the value of p(x;=1]|r) for a fixed J
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and for a given admissible value of 7, say 7,, consists
merely of the relative frequency with which more than
a trace of precipitation was observed in the Jth gage
in a suitably large number of observed forecast periods
in which a proportion 7; of the N gages showed rain.
Although these conditional one-point probabilities are
supposed to be functions of local climatological condi-
tions and independent of the probability distribution of
r, nevertheless if the method of forecasting by selection
of a likely regime Rg is used, it may be desirable to have
two or more different sets of estimates available for the
conditional one-point probabilities, corresponding, re-
spectively, to two or more different classes of circulation
patterns Rg.

The forecaster who uses the approach described at
the beginning of this section would now replace Eq. (9)
in calculating the probability forecast by the following
equation, which is a restatement of Eq. (3) in the
notation used in this section:

p(x;=1)=Prob(r=0)4Prob(r>0)

- fi®p(ws=1]r). (11)

=1

Although a different point probability would be calcu-
lated for each point J, presumably only two or three
approximations relevant to certain designated sub-
regions of FA would be released.

If approximations to the detailed conditional proba-
bilities p (21, %, - + -, £»/7) Were to be available instead of
only the one-point conditional probabilities p(x,=/7),
then a forecast of the probability vector (f1%, - - -, f» %K)
and of Prob (»>0) could be used to calculate proba-
bilities of various events concerning which the one-point
probabilities give no information except through in-
equalities such as (6), (7) and (8). For example, with
additional information, the multipoint unconditional
probabilities appearing in Eq. (5) could be easily
calculated.

If the two-point unconditional probabilities were to
be calculated for two specific points numbered J and K
in FA, then a problem such as “What is the probability
that J gets rain and K does not” can be solved. [The
answer to this one is p(xs=1)—p(xs=1, 2xg=1).]
Again, “What is the probability that neither one of
the two locations J and K gets rain?” [Answer,

1—pas=1)—plax=1)+pxs=1, 2g=1).]

6. Some fundamental questions regarding precipi-
tation probabilities

There apparently remains a certain amount of contro-
versy about the usefulness of releasing numerical pre-
cipitation probabilities to the public, and also about the
significance (or lack of it) of the released numbers as
true probabilities. It seems worth while to identify here
two areas in which questions might arise. No answers
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will be given, and no adverse criticism of U. S. Weather
Bureau policy as to precipitation probability forecasting
is intended. Rather, the idea is to suggest new types of
statistical verification programs which might clarify the
situation.

The discussion in this section is concerned only with
the sequence of rain-no rain observations taken at the
official verification station of a local forecast region in
relation to the announced “probability numbers.” There
will be no further consideration of the areal distribution
problem which forms the main theme of preceding
sections. Attention will be centered chiefly on two
topics: (a) Assuming that precipitation probability
forecasts are possible within the framework of classical
probability theory, have systematic biases in estimation
been visible in practice, which may be due to a scoring
method? (b) Do sequences of observed rain-no rain
observations for given forecast “probability’ categories
exhibit a sufficient degree of randomness to justify treat-
ing the released “probability numbers” as probabilities?

A discussion of the question of randomness in
numerical sequences may be found, for example, in
Feller (1957, Chap. VIII). For present purposes, the
sequences can be taken to be sequences of observations
on a dichotomous variable X which assume only the
values 0 and 1. Tt is not useful to try to define “random-
ness” by algebraic means for a single specific sequence,
such as 0110111010. The usual modern approach is via
testing the hypothesis that an observed sequence is
generated by successive independent observations on a
random variable X which has a fixed basic probability
for the event X =1 in each trial. This hypothesis will be
called the hypothesis of randomness. The sample space
for the hypothesized random experiment consists of all
possible infinite sequences of zeros and ones. It is not
difficult to calculate under the hypothesis of randomness
the probability of many different kinds of events in this
sample space. For example, consider the event E con-
sisting of all sequences in which the pattern 010 appears
only a finite number of times. The probability of E
happens to be zero, and if the event E were visible in a
given sequence there would be doubt as to the validity
of the hypothesis of randomness. A more crucial conse-
quence of the hypothesis is that if any rule is set up
which selects an infinite subsequence of a typical
sequence X1, X, X3, --- of determinations of X by
accepting or rejecting X;, j=1,2, - - - without regard to
the value of X; (e.g., “reject every other X;”’; or “accept
or reject X; on the flip of a coin”), then the frequency
ratio of ones in the first m terms of the subsequence
converges to the basic probability P with probability
one as m becomes infinite. This means that the event
consisting of all sequences in the sample space for which
this convergence takes place has probability measure
one. (The rule in which every determination of X is ac-
cepted is of course included.) The event would change if
the rule is changed, but it still would have probability
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one. The repeating sequence 00000001110000000111 - - -,
in which the frequency ratio of ones converges to
0.3, violates the subsequence consequence of the
hypothesis of randomness in countless ways. If this
sequence were observed, and then the repeating se-
quence 10110000001011000000- - - (with limiting fre-
quency ratio again 0.3) is next observed, the hypothesis
of a random mechanism producing these sequences with
basic probability p»=0.3 would be pragmatically
untenable.

The question of bias will now be discussed. There is
ample evidence that skillful forecasters can come up
consistently with precipitation “probability numbers”
which do exhibit some of the statistical attributes of
true probabilities when verified at the official rain gage.
Verification programs leading to this conclusion have
been described by Root (1962), Sanders (1963) and
various others.® The forecast probabilities have been
tested mainly for the presence of two attributes, identi-
fied in the literature as reliability and resolution. Relia-
bility refers to the degree to which any particular
forecast point probability P (e.g., P=309%) is repro-
duced by the relative frequency of forecast periods in
which rain is observed at the official gage, in a series of
forecast periods for which this P was released. Resolu-
tion refers to the extent to which the frequency distribu-
tion of released values of P is dispersed about the
climatological relative frequency of rain occurrence at
the official gage. Resolution can be evaluated qualita-
tively by just looking at a histogram of this frequency
distribution [as in Root (1962, Fig. 1)], or by more
sophisticated methods, of which the most popular now
seems to be the formula proposed by Brier (1950).
Sanders (1963) showed how to break down the Brier
score into two additive components, of which the first
measures reliability and the second measures resolution.
In its role as a measure of resolution, the Brier score
rewards a forecaster who consistently releases low pre-
cipitation probability numbers for forecast periods
during which no more than a trace is actually observed
at the official gage, and who consistently releases high
probability numbers for forecast periods when more
than a trace is actually observed.

In the verification data which this author has seen,
two phenomena are almost always present.® The first
one is a tendency of forecasters to underestimate the
probability of rain (as verified by relative frequency) in
the probability categories below the climatological rela-
tive frequency and to overestimate the probability (as
verified by relative frequency) above the climatological
relative frequency. The second phenomenon is the
avoidance of forecasts of probability numbers close to
the climatological relative frequency, as evidenced by a

8 See for example Hughes (0p. ¢it.) and Dickey (1965).

® This includes thirteen months of experience with two verified
forecast periods daily for the Miami and vicinity forecasts. The
data were prepared for the author by Mr. R. C. Sheets with the
permission of Dr. Gordon Dunn.
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relative minimum near this point in the height of the
histogram representing the frequency distribution of
released probabilities.’ It is true that it is easy to
imagine a geographical region (such as a desert) in
which a long-range climatological relative frequency of
precipitation is generally irrelevant to daily forecasts,
and the forecasters would have good reason seldom to
name this number in probability forecasts. But when
biases such as the two indicated above appear so
consistently in data from such diverse sources, is it not
possible to ask whether they might be induced by play-
ing a scoring system to the detriment of realistic
probability forecasting?

The more important and more delicate question of
randomness in observed rain-no rain sequences will now
be considered. In this discussion, the digit 1 will desig-
nate the event that rain is observed at the official
verification gage, and the digit 0 will denote no rain
recorded in that gage.

To lead up to the question let it first be noted that the
words ‘‘climatological probability’” appear frequently in
the literature. For example, Sanders (1963) used the
term and observed that “‘a forecast of the climatological
probability would be highly valid in the long run”
(loc. cit., p. 195). He was making the point that relia-
bility in itself is no measure of forecasting skill, but the
issue here is whether a series of precipitation ‘‘proba-
bility”” forecasts consisting of repeated announcements
of the climatiological relative frequency would mean
anything at all from a probabilistic point of view.
Consider the case of the three winter months in San
Francisco studied by Root (1962). Rain there during
the winter tends to come in periods several days in
length, followed by dry spells. The climatological rela-
tive frequency is about 30%,. But a typical sequence of
coded observations covering the three months might
read like this: 00---011---100---011---100- - -0, etc.,
in which the ratio of “ones” to the total number of
symbols is roughly 0.3. The idea is that the “‘ones”
appear in groups and so do the “zeros.” If today were
the first day of a dry spell, then the precipitation
probability for tomorrow is verifiable as 0, not 0.30. The
climatological relative frequency of 0.30 cannot be
accepted as a forecast probability with day-to-day
operational meaning, because the sequence of precipita-
tion events fails quite completely to accord with the
hypothesis of randomness.

But let it be taken for granted that “climatological
probability” is merely a figure of speech, and that the
forecaster, perhaps under the influence of the Brier
score, is going to make an effort to sort forecast circula-
tion types into reasonably sharp probability categories.
Consider again the data given by Root (1962). It
appears, for example, that there were 440 cases in which

1 Both phenomena are present in the data of Root (1962),
Hughes (op. ¢it.), Dickey (op. cit., excluding data shown for a
Hartford, Conn., program), and the Maimi data referred to in
footnote 9.

VOLUME 7

the forecast probability was 209, and in these cases,
rain was observed 123 times, for a relative frequency of
28.09. Each time the forecaster issued this forecast, he
was predicting the probability that a rainy spell would
clear up or a dry spell would be interrupted. It seems
possible with such a systematic pattern in the overall
sequence of observations that the sequence of rain
observations in the 440 cases itself might tend to follow
some systematic pattern. If as an extreme case they
exhibited a pattern such as 0000100001 - -, then the
forecast probability of 209, would be meaningless in
making day-to-day interpretations.

The author does not know whether such patterns
really did exist in the San Francisco program. The
illustration is used only to raise in a specific context the
spectra of non-randomness in a sequence of dichotomous
precipitation events to which a fixed probability P has
been assigned. The author is not aware of any statistical .
studies which have been made in this direction. There is
some reason to suspect trouble. Root (1962) seems to
mention obliquely the possibility of lack of independence
in precipitation observations for a given probability
category. In the Miami data the author found a number
of statistical anomalies. One of them was that for the
209, category (23 cases), 509, category (37 cases), 609,
category (37 cases), and 709, category (28 cases), the
observed relative frequencies of rain deviated by an
improbably small amount from the forecast probability.
This can be symptomatic of non-randomness.

A precipitation “probability number’” which is verifi-
able only as a relative frequency over a long series of
forecasts would be economically useful for certain
purposes, whether or not the precipitation events appear
to be compatible with the hypothesis of randomness.
But if the sequence of precipitation events is non-
random, the question then arises as to whether some
improvement can be made in the relevance of the fore-
cast to individual forecast periods. It may be possible to
put the question back into a probability framework by
postulating that the overall sequence of rain-no rain
observations at the official gage are observations on a
two-valued (zero-one) stochastic process (Parzen, 1962,
p. 35 ff). A precipitation probability forecast would be
an estimate of a transition probability in the process.
By transition probability is meant the conditional
probability of a “‘one,” given the forecast conditions and
the values of the observations over the more or less
immediate past.

7. Summary and conclusions

This paper is concerned with the precipitation proba-
bilities now issued routinely in local forecasts by the
U. S. Weather Bureau. It is assumed that, in general,
the occurrence of the event to which a precipitation
forecast refers is verifiable by the observation of more
than a trace of rain during the forecast period at each
point of a particular subregion of the forecast area. The



FEBRUARY 1968 J. H.

event to which a precipitation probability forecast
applies is the occurrence of more than a trace of rain at
a particular point of the forecast area. This event occurs
when the point is contained in the wetted subregion.

Under these premises, the logical sample space to use
when precipitation events are to be assigned proba-
bilities consists simply of the collection of all subregions
of the forecast area. A subregion “occurs” if all points
in it receive more than a trace and all other points in the
forecast area receive no more than a trace.

To accord with reality, this sample space is simplified
by replacing the forecast area by a finite number ¥ of
distinct points representing the locations of rain gages
in the forecast area. The sample space then becomes the
set of all possible selections from these N points, taken
one at a time, two at a time, -+, N at a time. An
explicit notation is introduced to identify individ-
ual selections by setting up indicator N-tuples (xy,
Xy, -+, %x) in which the components x; have the values
zero and one. If the Jth point is in a given selection,
then ;=1 in the N-tuple corresponding to this selec-
tion; if not, then x;=0. The sample space can then be
represented by the set of all .V-tuples (x1, %5, - - -, 2x) in
which the elements are zeros and ones.

The assignment of probabilities to this sample space
is broken down into two steps in accordance with the
intended application of the model. In the first step, the
N-tuples are stratified according to the number of ones
in each. Let ¢ be the number of ones in a given V-tuple.
The fraction »;,=i/N then represents the proportionate
areal coverage. For a fixed 1, the corresponding N-tuples
are each assigned point probabilities p (x1, %, - - +, 2w | 74),
which add up to unity, and which in the overall assign-
ment of probabilities appear as conditional probabilities,
given i(or 7;). The second step consists in assigning an
unconditional distribution to a random variable » on
the fractions r;=1/N, 1=0, 1, ---, N. In the intended
application, the conditional probabilities p (%1, s, - - -,
xy|7;) are viewed as constants determined by local
climatological conditions, and it is only the distribution
of » which is the object of a forecast.

The one-point conditional probability p(x;=1|r.) for
a fixed areal coverage 7; is given by a suitably restricted
summation [Eq. (2)] of the conditional probabilities
p(x1, %2y + -, xn|7:) Over the sample space. The arith-
metic mean of the numbers p{x;=11r;), J=1, ---, N, is
equal to 7; (Theorem I). The unconditional point
probability p(x;=1) of the event that the Jth gage
records more than a trace is given by Eq. (3) in terms
of the conditicnal point probabilities p(x;=1]7;) and
the probability vector = or ». The arithmetic mean of
the unconditional probabilities for the N locations is
equal to the theoretical mean value of  over the distri-
bution given by = (Theorem IT). Analogous theorems
are given for multipoint probabilities (Theorems III
and IV). An immediate consequence of the “arithmetic
mean’’ statements in the preceding paragraph is that if
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for any given 7, the conditional one-point probabilities
p(xs=1]r;) are assumed to be equal for /=1, 2, -- -, NV,
then the common value is 7; and if the unconditional
one-point probabilities p(x;=1) are assumed to be
equal for /=1, 2, - -+, N (as is usually implied in U. S.
Weather Bureau forecasts), then the common value is
the theoretical mean value of 7 over its assigned proba-
bility distribution as given by =. It is proved (Theorem
V) that if a forecaster always assumes that the uncondi-
tional point probabilities p (xy=1) are equal, no matter
what the forecast vector = is, then he is automatically
assuming that the conditional point probabilities
p(xs=1|r;) are all equal for each r; (and equal to 7).
The word “‘always” in the preceding sentence can be
replaced by merely “sometimes” according to Theorem
VI

An assignment of probabilities leading to equal
conditional one-point probabilities p(xy=1|r:), /=1,
2, -+, N, for some particular »; does not imply that the
1 gages in which more than a trace is recorded are
“selected at random” by the rainfall, in the classical
sense that the possible selections of ¢ gages from the
gages are equiprobable.

On both practical and theoretical grounds, an assump-
tion of a uniform two-point probability seems to be
inacceptable, especially if at the same time an assump-
tion of a uniform one-point probability is also made. If
it is assumed that in cases of partial areal coverage, the
gages recording rain are “selected at random,” then the
two assumptions in the preceding sentence would auto-
matically be implied, so the assumption of random
selection should be avoided.

A method of preparing precipitation probability fore-
casts which is considered by forecasters to be a natural
one consists essentially in forecasting the probability
vector = of 7 in two steps as follows: First a circulation
regime R is selected which seems likely to obtain over
FA during the forecast period. If R obtains, there will
be some rain somewhere in FA. It is assumed that either
R will obtain or there will be no rain. It is presupposed
that from past experience the conditional mean value
E(r|R) of the proportionate areal coverage, given that
R obtains, has been estimated. The forecaster estimates
the probability that R will obtain, which is Prob(r>0).
He then releases E(r| R) - Prob (> 0) as the precipitation
probability. It can easily be shown mathematically that
the number he is issuing is the theoretical mean value
of r over a probability distribution compatible with his
selections of R and Prob(r>0). Then as stated above
in this summary, since he is assuming tacitly that his
single precipitation probability is valid at each point of
the forecast area, it is mathematically true (with this
tacit assumption) that the precipitation probability
arrived at by the above method is the uniform point
probability.

If the repertory of regimes R recognized by a fore-
caster is as large in number or larger than the number N
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of rain gages in the forecast area, and if the repertory
contains a subset .S of which the probability vectors
satisfy the hypothesis of Theorem VI (which seems
certain to be the case), then the persistent issuing of a
single precipitation probability for the forecast area
when confronted by each of the regimes in S implies
that the conditional one-point probabilities p(x;=1]r),
J=1, .-+, N, are all equal for each admissible value of
r. For certain forecast areas and in certain seasons,
such an implication seems to be unrealistic.

In such situations, one rather artificial way to achieve
realism is by simply qualifying the released point
probability by the word “average,” meaning arithmetic
average over the forecast area. A precipitation proba-
bility calculated by some method which estimates the
mean value of the proportionate areal coverage is truly
the arithmetic average of the point probabilities at the
gages in the forecast area.

Another way is to use the model in this paper to
calculate more than one point probability from a single
forecast regime R and .a forecast of its probability of
occurrence. To do this, the forecaster would: (a) need to
have an estimate, based on historical data, of the
conditional probability distribution of #, given R
(instead of merely the conditional mean value of ) ; and
(b) would need to have statistical estimates of the
conditional point probabilities p{x;=1|r), J=1, 2,

-, N, for the admissible values of 7. It would appear
that such statistical estimates could very easily be ob-
tained, and that very possibly there already exist his-
torical data in the various forecast regions for making
the estimate.

If estimates of the detailed point conditional proba-
bilities p (x4, %2, - -, %x|7) are obtained, or at least if
estimates of the multipoint conditional probabilities
plxr,=1, x5,=1, -+, Xym=1|r) are available, then
various multipoint probability problems can be worked
out which are inaccessible if only one-point probabilities
are given, whether uniform or not. An example is,
“What is the probability that neither one of locations
J and K gets rain?”

Finally, two questions about precipitation proba-
bilities are raised as typical of areas in which further
statistical research might be useful. Both are concerned
only with verification.at a single official rain gage
without regard to areal distribution. The first relates to
persistent biases in the direction of “overforecasting”
which are visible in the data of almost all published
verification programs. The second, a more difficult
question, is concerned with the presence or absence of
randomness in sequences of rain occurrences within fore-
cast probability categories. Absence of randomness
would seriously impair the significance of the released
“probability numbers” as actual probabilities.
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APPENDIX
Proof of Theorem I

Write our Eq. (2) for each J, /=1, 2, ---, N, and
look at the formula for p(x,=1]r,). Consider a particu-
lar symbol which appears in it, say p(1, %o, x5, - - -,
xn|7;). In this symbol, # N—1=i—1 of the variables
X9, %3, -+, ¥y have the value 1. Suppose these are
Xjys Xjyy * 5 X, m=7;N—1. The symbol appears again
in the formula for p(x;,=1|7,), also in the formulas for
plas,=1[r), plas,=1]|rs), -+, p(x;,,=1]|r.). These are
the only appearances of this symbol in the set of N
formulas for p(x,=1]r;), J=1, - - -, N. Similarly, every
other symbol in the formula for p(x,=1|r;) reappears
in exactly ;N —1 other formulas. By applying this argu-
ment to the formulas for p(xo=1|r.), p(ws=1]r), - -,
p(xx=1]ry), it can be seen that every possible symbol
p(®1, %2, -+, xy|7;) appears in the formulas exactly
riV times. Now sum the formulas. By Eq. (1), the
result is

M=

p(x1=1lri)=r,~z\7><1,
1
50

2 ples=1[r)
J=1

=7;.
N

Proof of Theorem III

For a particular selection of integers J,, Jy, - -
consider a term p (1, x2, - - -, #x|#;) in which (of course)
Ty =%g,=--=x;,=1, and in which also x,,
=%y,= - =xy,=1, where m+k=7r;N=1, and the
subscripts are all different integers. This term will
reappear in the formula for p(ag,=1, xx,=1, ---,
%k ,=1|r;) whenever {Ky, K, - - -, K} is a selection of
m integers from the set of integers {Jy, Jo, -+ -, Jm, J'y,
J’s, -+, J'k}. The total number of such selections

(including {Jy, - -, Jn} itself) is (;L), so each term

on the right side of (4) appears this many times when
the Eqgs. (4) are written out for all the different selec-
tions of m locations from N. Now all possible different
N-tuples (w1, ®s, ---, zy) With exactly ¢ ones in them
appear in the Egs. (4) when they are written out for all
the different selections of m locations from N, and by
(1), the probabilities p(x1, 3, - -. 2x|7;) must add up

to one. Therefore, if the (Z) equations (4) for a fixed

'yJWU

m and 7, are all added together, the right side will equal
1 added to itself (;1) times. The resulting equation is

i ()-(0)
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where the summation is over all selections of m integers
Jy, Ty -+, Jn from the from the integers 1, 2, -- -, V.

When this equation is divided by (Z), the right

side becomes
<1’ NV > (7’ 5[\7) !
m m!(r:N—m)!

N) Nt
(m mt(N—m)!

and after cancellations the right member of the equation
in Theorem III is obtained.

Proof of Theorem VI

The hypothesis implies that the N XN matrix, of
which the kth row vector is (m‘®, 7@, - - - m®), is
non-singular. It follows that the system of equations

T Bty ®oyt - ay®ey=0, k=1, 2, ---, N, in the
“unknowns” ¢y, ¢z, -+, cn, has the unique solutions
c1=c¢y=---=c¢y=0. Let J and K be any two integers,

1=J<K=N. The hypothesis states that p(x;=1)
= p(xx=1). Therefore by Eq. (3),

N N
2 plas=1]rdm® =3 plax=1|r)m®,
1

=1

or

gl Cplwr=1]r)—plxg=1|r) Jr:® =0,

for k=1, 2, .-+, N. Thus,
plas=1]r)—plag=1|r)=0,4i=1,2, - -, N.

The proof of the theorem is complete.

Suppose that in a set S of N specifications of the
probability vector = of the proportion » of areal cover-
age, the kth vector =* gives preferential probability to
the value r=7,=%/N in the sense defined in the text.
Then the matrix of which the row vectors are the vectors
§ with first components deleted has a dominant diago-
nal. Therefore, by a well-known theorem [for example,
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see Varga (1962, p. 23)] this matrix is non-singular, so
its row vectors are linearly independent and the hypoth-
esis of Theorem VI is satisfied.
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